
10/8/2020 A visual guide on troubleshooting Kubernetes deployments

https://learnk8s.io/troubleshooting-deployments 1/27

TRAINING BLOG RESOURCES

Daniele Polencic

A visual guide on troubleshooting
Kubernetes deployments

PUBLISHED IN DECEMBER 2019

TL;DR: here's a diagram to help you debug your deployments in Kubernetes
(and you can download it in the PDF version here).

https://learnk8s.io/
https://learnk8s.io/learn
https://learnk8s.io/blog
https://learnk8s.io/kubernetes-resources
https://linkedin.com/in/danielepolencic
https://learnk8s.io/a/a-visual-guide-on-troubleshooting-kubernetes-deployments/troubleshooting-kubernetes.pdf

10/8/2020 A visual guide on troubleshooting Kubernetes deployments

https://learnk8s.io/troubleshooting-deployments 2/27

10/8/2020 A visual guide on troubleshooting Kubernetes deployments

https://learnk8s.io/troubleshooting-deployments 3/27

When you wish to deploy an application in Kubernetes, you usually define
three components:

a Deployment — which is a recipe for creating copies of your application
called Pods

a Service — an internal load balancer that routes the traffic to Pods

an Ingress — a description of how the traffic should flow from outside the
cluster to your Service.

Here's a quick visual recap.

In Kubernetes your applications are exposed through two
layers of load balancers: internal and external.

NEXT

1/3

10/8/2020 A visual guide on troubleshooting Kubernetes deployments

https://learnk8s.io/troubleshooting-deployments 4/27

Assuming you wish to deploy a simple Hello World application, the YAML for
such application should look similar to this:

hello-world.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: my-deployment

 labels:

 track: canary

spec:

 selector:

 matchLabels:

 any-name: my-app

 template:

 metadata:

 labels:

 any-name: my-app

 spec:

 containers:

 - name: cont1

 image: learnk8s/app:1.0.0

 ports:

 - containerPort: 8080

apiVersion: v1

kind: Service

metadata:

 name: my-service

spec:

 ports:

 - port: 80

 targetPort: 8080

 selector:

 name: app

apiVersion: networking.k8s.io/v1beta1

10/8/2020 A visual guide on troubleshooting Kubernetes deployments

https://learnk8s.io/troubleshooting-deployments 5/27

The definition is quite long, and it's easy to overlook how the components
relate to each other.

For example:

When should you use port 80 and when port 8080?

Should you create a new port for every Service so that they don't clash?

Do label names matter? Should it be the same everywhere?

Before focusing on the debugging, let's recap how the three components link
to each other.

Let's start with Deployment and Service.

Connecting Deployment and Service

The surprising news is that Service and Deployment aren't connected at all.

Instead, the Service points to the Pods directly and skips the Deployment
altogether.

kind: Ingress

metadata:

 name: my-ingress

spec:

 rules:

 - http:

 paths:

 - backend:

 serviceName: app

 servicePort: 80

 path: /

10/8/2020 A visual guide on troubleshooting Kubernetes deployments

https://learnk8s.io/troubleshooting-deployments 6/27

So what you should pay attention to is how the Pods and the Service are
related to each other.

You should remember three things:

1. The Service selector should match at least one label of the Pod

2. The Service targetPort should match the containerPort of the
container inside the Pod

3. The Service port can be any number. Multiple Services can use the
same port because they have different IP addresses assigned.

The following diagram summarises the how to connect the ports:

 PREVIOUS If your container exposes port 3000, then the
targetPort should match that number.

5/5

10/8/2020 A visual guide on troubleshooting Kubernetes deployments

https://learnk8s.io/troubleshooting-deployments 7/27

If you look at the YAML, the labels and ports / targetPort should match:

hello-world.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: my-deployment

 labels:

 track: canary

spec:

 selector:

 matchLabels:

 any-name: my-app

 template:

 metadata:

 labels:

 any-name: my-app

 spec:

 containers:

 - name: cont1

 image: learnk8s/app:1.0.0

 ports:

 - containerPort: 8080

apiVersion: v1

kind: Service

metadata:

 name: my-service

spec:

 ports:

 - port: 80

 targetPort: 8080

 selector:

 any-name: my-app

10/8/2020 A visual guide on troubleshooting Kubernetes deployments

https://learnk8s.io/troubleshooting-deployments 8/27

What about the track: canary label at the top of the Deployment?

Should that match too?

That label belongs to the deployment, and it's not used by the Service's
selector to route traffic.

In other words, you can safely remove it or assign it a different value.

And what about the matchLabels selector?

It always has to match the Pod labels and it's used by the Deployment to
track the Pods.

Assuming that you made the correct change, how do you test it?

You can check if the Pods have the right label with the following command:

Or if you have Pods belonging to several applications:

Where any-name=my-app is the label any-name: my-app .

bash

kubectl get pods --show-labels _$

bash

kubectl get pods --selector any-name=my-app --show-labels _$

10/8/2020 A visual guide on troubleshooting Kubernetes deployments

https://learnk8s.io/troubleshooting-deployments 9/27

Still having issues?

You can also connect to the Pod!

You can use the port-forward command in kubectl to connect to the
Service and test the connection.

Where:

service/<service name> is the name of the service — in the current YAML
is "my-service"

3000 is the port that you wish to open on your computer

80 is the port exposed by the Service in the port field

If you can connect, the setup is correct.

If you can't, you most likely misplaced a label or the port doesn't match.

Connecting Service and Ingress

The next step in exposing your app is to configure the Ingress.

The Ingress has to know how to retrieve the Service to then retrieve the
Pods and route traffic to them.

The Ingress retrieves the right Service by name and port exposed.

bash

kubectl port-forward service/<service name> 3000:80 _$

10/8/2020 A visual guide on troubleshooting Kubernetes deployments

https://learnk8s.io/troubleshooting-deployments 10/27

Two things should match in the Ingress and Service:

1. The servicePort of the Ingress should match the port of the Service

2. The serviceName of the Ingress should match the name of the Service

The following diagram summarises how to connect the ports:

In practice, you should look at these lines:

You already know that the Service expose a port . NEXT

1/4

hello-world.yaml

10/8/2020 A visual guide on troubleshooting Kubernetes deployments

https://learnk8s.io/troubleshooting-deployments 11/27

How do you test that the Ingress works?

You can use the same strategy as before with kubectl port-forward , but
instead of connecting to a service, you should connect to the Ingress
controller.

First, retrieve the Pod name for the Ingress controller with:

apiVersion: v1

kind: Service

metadata:

 name: my-service

spec:

 ports:

 - port: 80

 targetPort: 8080

 selector:

 any-name: my-app

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

 name: my-ingress

spec:

 rules:

 - http:

 paths:

 - backend:

 serviceName: my-service

 servicePort: 80

 path: /

bash

kubectl get pods --all-namespaces $

10/8/2020 A visual guide on troubleshooting Kubernetes deployments

https://learnk8s.io/troubleshooting-deployments 12/27

Identify the Ingress Pod (which might be in a different Namespace) and
describe it to retrieve the port:

Finally, connect to the Pod:

NAMESPACE NAME READY STATUS

kube-system coredns-5644d7b6d9-jn7cq 1/1 Running

kube-system etcd-minikube 1/1 Running

kube-system kube-apiserver-minikube 1/1 Running

kube-system kube-controller-manager-minikube 1/1 Running

kube-system kube-proxy-zvf2h 1/1 Running

kube-system kube-scheduler-minikube 1/1 Running

kube-system nginx-ingress-controller-6fc5bcc 1/1 Running

_$

bash

 --namespace kube-system \

 | grep Ports

Ports: 80/TCP, 443/TCP, 18080/TCP

kubectl describe pod nginx-ingress-controller-6fc5bcc \$

_$

bash

kubectl port-forward nginx-ingress-controller-6fc5bcc 3000:80 --names$

10/8/2020 A visual guide on troubleshooting Kubernetes deployments

https://learnk8s.io/troubleshooting-deployments 13/27

At this point, every time you visit port 3000 on your computer, the request is
forwarded to port 80 on the Ingress controller Pod.

If you visit http://localhost:3000, you should find the app serving a web page.

Recap on ports

Here's a quick recap on what ports and labels should match:

1. The Service selector should match the label of the Pod

2. The Service targetPort should match the containerPort of the
container inside the Pod

3. The Service port can be any number. Multiple Services can use the same
port because they have different IP addresses assigned.

4. The servicePort of the Ingress should match the port in the Service

5. The name of the Service should match the field serviceName in the
Ingress

Knowing how to structure your YAML definition is only part of the story.

What happens when something goes wrong?

Perhaps the Pod doesn't start, or it's crashing.

3 steps to troubleshoot Kubernetes
deployments

It's essential to have a well defined mental model of how Kubernetes works
before diving into debugging a broken deployment.

http://localhost:3000/

10/8/2020 A visual guide on troubleshooting Kubernetes deployments

https://learnk8s.io/troubleshooting-deployments 14/27

Since there are three components in every deployment, you should debug
all of them in order, starting from the bottom.

1. You should make sure that your Pods are running, then

2. Focus on getting the Service to route traffic to the Pods and then

3. Check that the Ingress is correctly configured

1. Troubleshooting Pods

You should start troubleshooting your deployments from
the bottom. First, check that the Pod is Ready and
Running.

NEXT

1/3

10/8/2020 A visual guide on troubleshooting Kubernetes deployments

https://learnk8s.io/troubleshooting-deployments 15/27

Most of the time, the issue is in the Pod itself.

You should make sure that your Pods are Running and Ready.

How do you check that?

In the above session, the last Pod is Running and Ready — however, the
first two Pods are neither Running nor Ready.

How do you investigate on what went wrong?

There are four useful commands to troubleshoot Pods:

1. kubectl logs <pod name> is helpful to retrieve the logs of the containers of
the Pod

2. kubectl describe pod <pod name> is useful to retrieve a list of events
associated with the Pod

3. kubectl get pod <pod name> is useful to extract the YAML definition of the
Pod as stored in Kubernetes

4. kubectl exec -ti <pod name> bash is useful to run an interactive
command within one of the containers of the Pod

Which one should you use?

bash

NAME READY STATUS RESTARTS AGE

app1 0/1 ImagePullBackOff 0 47h

app2 0/1 Error 0 47h

app3-76f9fcd46b-xbv4k 1/1 Running 1 47h

kubectl get pods $

_$

10/8/2020 A visual guide on troubleshooting Kubernetes deployments

https://learnk8s.io/troubleshooting-deployments 16/27

There isn't a one-size-fits-all.

Instead, you should use a combination of them.

Common Pods errors

Pods can have startup and runtime errors.

Startup errors include:

ImagePullBackoff

ImageInspectError

ErrImagePull

ErrImageNeverPull

RegistryUnavailable

InvalidImageName

Runtime errors include:

CrashLoopBackOff

RunContainerError

KillContainerError

VerifyNonRootError

RunInitContainerError

CreatePodSandboxError

ConfigPodSandboxError

KillPodSandboxError

SetupNetworkError

TeardownNetworkError

Some errors are more common than others.

10/8/2020 A visual guide on troubleshooting Kubernetes deployments

https://learnk8s.io/troubleshooting-deployments 17/27

The following is a list of the most common error and how you can fix them.

ImagePullBackOff

This error appears when Kubernetes isn't able to retrieve the image for one
of the containers of the Pod.

There are three common culprits:

1. The image name is invalid — as an example, you misspelt the name, or the
image does not exist

2. You specified a non-existing tag for the image

3. The image that you're trying to retrieve belongs to a private registry, and
Kubernetes doesn't have credentials to access it

The first two cases can be solved by correcting the image name and tag.

For the last, you should add the credentials to your private registry in a
Secret and reference it in your Pods.

The official documentation has an example about how you could to that.

CrashLoopBackOff

If the container can't start, then Kubernetes shows the CrashLoopBackOff
message as a status.

Usually, a container can't start when:

1. There's an error in the application that prevents it from starting

2. You misconfigured the container

3. The Liveness probe failed too many times

https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/
https://stackoverflow.com/questions/41604499/my-kubernetes-pods-keep-crashing-with-crashloopbackoff-but-i-cant-find-any-lo

10/8/2020 A visual guide on troubleshooting Kubernetes deployments

https://learnk8s.io/troubleshooting-deployments 18/27

You should try and retrieve the logs from that container to investigate why it
failed.

If you can't see the logs because your container is restarting too quickly, you
can use the following command:

Which prints the error messages from the previous container.

RunContainerError

The error appears when the container is unable to start.

That's even before the application inside the container starts.

The issue is usually due to misconfiguration such as:

mounting a not-existent volume such as ConfigMap or Secrets

mounting a read-only volume as read-write

You should use kubectl describe pod <pod-name> to collect and analyse
the error.

Pods in a Pending state

When you create a Pod, the Pod stays in the Pending state.

Why?

bash

kubectl logs <pod-name> --previous _$

10/8/2020 A visual guide on troubleshooting Kubernetes deployments

https://learnk8s.io/troubleshooting-deployments 19/27

Assuming that your scheduler component is running fine, here are the
causes:

1. The cluster doesn't have enough resources such as CPU and memory to
run the Pod

2. The current Namespace has a ResourceQuota object and creating the Pod
will make the Namespace go over the quota

3. The Pod is bound to a Pending PersistentVolumeClaim

Your best option is to inspect the Events section in the kubectl describe

command:

For errors that are created as a result of ResourceQuotas, you can inspect
the logs of the cluster with:

Pods in a not Ready state

If a Pod is Running but not Ready it means that the Readiness probe is
failing.

bash

kubectl describe pod <pod name> _$

bash

kubectl get events --sort-by=.metadata.creationTimestamp _$

10/8/2020 A visual guide on troubleshooting Kubernetes deployments

https://learnk8s.io/troubleshooting-deployments 20/27

When the Readiness probe is failing, the Pod isn't attached to the Service,
and no traffic is forwarded to that instance.

A failing Readiness probe is an application-specific error, so you should
inspect the Events section in kubectl describe to identify the error.

2. Troubleshooting Services

If your Pods are Running and Ready, but you're still unable to receive a
response from your app, you should check if the Service is configured
correctly.

Services are designed to route the traffic to Pods based on their labels.

So the first thing that you should check is how many Pods are targeted by
the Service.

You can do so by checking the Endpoints in the Service:

An endpoint is a pair of <ip address:port> , and there should be at least
one — when the Service targets (at least) a Pod.

If the "Endpoints" section is empty, there are two explanations:

1. you don't have any Pod running with the correct label (hint: you should
check if you are in the right namespace)

bash

kubectl describe service <service-name> | grep Endpoints _$

10/8/2020 A visual guide on troubleshooting Kubernetes deployments

https://learnk8s.io/troubleshooting-deployments 21/27

2. You have a typo in the selector labels of the Service

If you see a list of endpoints, but still can't access your application, then the
targetPort in your service is the likely culprit.

How do you test the Service?

Regardless of the type of Service, you can use kubectl port-forward to
connect to it:

Where:

<service-name> is the name of the Service

3000 is the port that you wish to open on your computer

80 is the port exposed by the Service

3. Troubleshooting Ingress

If you've reached this section, then:

the Pods are Running and Ready

the Service distributes the traffic to the Pod

But you still can't see a response from your app.

It means that most likely, the Ingress is misconfigured.

bash

kubectl port-forward service/<service-name> 3000:80 _$

10/8/2020 A visual guide on troubleshooting Kubernetes deployments

https://learnk8s.io/troubleshooting-deployments 22/27

Since the Ingress controller being used is a third-party component in the
cluster, there are different debugging techniques depending on the type of
Ingress controller.

But before diving into Ingress specific tools, there's something
straightforward that you could check.

The Ingress uses the serviceName and servicePort to connect to the
Service.

You should check that those are correctly configured.

You can inspect that the Ingress is correctly configured with:

If the Backend column is empty, then there must be an error in the
configuration.

If you can see the endpoints in the Backend column, but still can't access the
application, the issue is likely to be:

how you exposed your Ingress to the public internet

how you exposed your cluster to the public internet

You can isolate infrastructure issues from Ingress by connecting to the
Ingress Pod directly.

First, retrieve the Pod for your Ingress controller (which could be located in a
different namespace):

bash

kubectl describe ingress <ingress-name> _$

10/8/2020 A visual guide on troubleshooting Kubernetes deployments

https://learnk8s.io/troubleshooting-deployments 23/27

Describe it to retrieve the port:

Finally, connect to the Pod:

bash

NAMESPACE NAME READY STATUS

kube-system coredns-5644d7b6d9-jn7cq 1/1 Running

kube-system etcd-minikube 1/1 Running

kube-system kube-apiserver-minikube 1/1 Running

kube-system kube-controller-manager-minikube 1/1 Running

kube-system kube-proxy-zvf2h 1/1 Running

kube-system kube-scheduler-minikube 1/1 Running

kube-system nginx-ingress-controller-6fc5bcc 1/1 Running

kubectl get pods --all-namespaces $

_$

bash

 --namespace kube-system \

 | grep Ports

kubectl describe pod nginx-ingress-controller-6fc5bcc $

_$

bash

kubectl port-forward nginx-ingress-controller-6fc5bcc 3000:80 --names$

10/8/2020 A visual guide on troubleshooting Kubernetes deployments

https://learnk8s.io/troubleshooting-deployments 24/27

At this point, every time you visit port 3000 on your computer, the request is
forwarded to port 80 on the Pod.

Does it works now?

If it works, the issue is in the infrastructure. You should investigate how the
traffic is routed to your cluster.

If it doesn't work, the problem is in the Ingress controller. You should debug
the Ingress.

If you still can't get the Ingress controller to work, you should start debugging
it.

There are many different versions of Ingress controllers.

Popular options include Nginx, HAProxy, Traefik, etc.

You should consult the documentation of your Ingress controller to find a
troubleshooting guide.

Since Ingress Nginx is the most popular Ingress controller, we included a
few tips for it in the next section.

Debugging Ingress Nginx

The Ingress-nginx project has an official plugin for Kubectl.

You can use kubectl ingress-nginx to:

inspect logs, backends, certs, etc.

connect to the Ingress

examine the current configuration

The three commands that you should try are:

https://github.com/kubernetes/ingress-nginx
https://kubernetes.github.io/ingress-nginx/kubectl-plugin/

10/8/2020 A visual guide on troubleshooting Kubernetes deployments

https://learnk8s.io/troubleshooting-deployments 25/27

kubectl ingress-nginx lint , which checks the nginx.conf

kubectl ingress-nginx backend , to inspect the backend (similar to
kubectl describe ingress <ingress-name>)

kubectl ingress-nginx logs , to check the logs

Please notice that you might need to specify the correct namespace
for your Ingress controller with --namespace <name> .

Summary

Troubleshooting in Kubernetes can be a daunting task if you don't know
where to start.

You should always remember to approach the problem bottom-up: start with
the Pods and move up the stack with Service and Ingress.

The same debugging techniques that you learnt in this article can be applied
to other objects such as:

failing Jobs and CronJobs

StatefulSets and DaemonSets

Many thanks to Gergely Risko, Daniel Weibel and Charles Christyraj for
offering some invaluable suggestions.

Don't miss the next article!

Be the first to be notified when a new article or Kubernetes
experiment is published.

https://github.com/errge
https://medium.com/@weibeld
https://www.linkedin.com/in/charles-christyraj-0bab8a36/

10/8/2020 A visual guide on troubleshooting Kubernetes deployments

https://learnk8s.io/troubleshooting-deployments 26/27

Your email address Your email address

Subscribe ⇢

*We'll never share your email address, and you can opt-out at any time.

What is Learnk8s?
In-depth Kubernetes training that is practical
and easy to understand.

⎈ Instructor-led workshops ❯

Deep dive into containers and Kubernetes
with the help of our instructors and become
an expert in deploying applications at scale.

⎈ Online courses ❯

Learn Kubernetes online with hands-on, self-
paced courses. No need to leave the comfort
of your home.

⎈ Corporate training ❯

Train your team in containers and
Kubernetes with a customised learning path
— remotely or on-site.

https://learnk8s.io/training
https://learnk8s.io/academy
https://learnk8s.io/corporate-training

10/8/2020 A visual guide on troubleshooting Kubernetes deployments

https://learnk8s.io/troubleshooting-deployments 27/27

y

COMPANY

Contact us

Team

Careers

Blog

Newsletter

KEEP IN TOUCH

Copyright © Learnk8s 2017-2020. Made with ❤ in London. View our Terms and Conditions or Privacy Policy. Send us a note to
hello@learnk8s.io

https://learnk8s.io/contact-us
https://learnk8s.io/about-us
https://learnk8s.io/careers
https://learnk8s.io/blog
https://learnk8s.io/newsletter
https://github.com/learnk8s
https://twitter.com/learnk8s
https://www.linkedin.com/company/learnk8s/
https://learnk8s.io/slack
https://learnk8s.io/telegram
https://learnk8s.io/terms-and-conditions
mailto:hello@learnk8s.io

